Persiapan tambak merupakan salah satu faktor penting untuk menjaga kondisi lingkungan tambak untuk menjamin kelayakan hidup udang. Persiapan tambak yang sering dilakukan oleh petambak ialah mengolah tanah tambak dengan cara menjemur, mengangkat lapisan lumpur dan pemberian kapur (CaCO3). Akan tetapi, cara pengolahan tanah tambak tersebut dinilai kurang maksimal dalam mengurangi konsentrasi hidrogen sulfida dan amoniak.
Oleh karena itu, diperlukan cara pengolahan tanah tambak lain yang lebih maksimal dalam mengurangi konsentrasi hidrogen sulfida dan amoniak. Pada percobaan ini dikaji cara pengolahan tanah tambak dengan pengangkatan lapisan lumpur yang selanjutnya disertai pembakaran sekam dan pengangkatan lapisan lumpur yang selanjutnya disertai pencucian air tawar.
Pada percobaan pendahuluan dilakukan pengujian dengan metode HCl dan Zn asetat terhadap tanah dari beberapa cara pengolahan tanah tambak. Pada percobaan ini didapatkan hasil bahwa dengan cara pengangkatan lapisan lumpur yang selanjutnya disertai pembakaran sekam di atas tanah merupakan cara yang mampu menghilangkan hidrogen sulfida paling maksimal. Pada percobaan pendahuluan dengan metode pengangkatan lapisan lumpur yang selanjutnya disertai pencucian air tawar didapatkan hasil bahwa pengurangan konsentrasi H2S secara maksimal terdapat pada pergantian air ke tiga dan masing-masing dua kali pengadukan. Percobaan lanjutan perlu dilakukan untuk mengetahui cara pengolahan tanah tambak yang efektif dalam memperbaiki kualitas tanah tambak yang mendukung kehidupan udang vaname melalui kajian pertumbuhan dan kelangsungan hidup. 2.1 Biologi Udang Vaname
Udang vaname adalah salah satu spesies udang dan potensial untuk dikembangkan secara komersial. Pada tahun 2008 rata-rata produksi udang mencapai 11,6 % dari seluruh hasil budidaya (Direktorat Jenderal Perikanan Budidaya, 2009).
Menurut Boone (1931), udang vaname mempunyai klasifikasi dan tata nama sebagai berikut :
Kingdom : Animalia
Filum : Arthropoda
Subfilum : Crustacea
Kelas : Malacostraca
Subkelas : Eumalacostraca
Superordo : Eucarida
Ordo : Decapoda
Subordo : Dendrobrachiata
Famili : Penaeidae
Genus : Litopenaeus
Species : Litopenaeus vannamei
Menurut Haliman dan Adijaya (2004), secara morfologi udang vaname memiliki tubuh yang dibentuk oleh dua cabang (biramous) yaitu exopodite dan endopodite. Udang vaname memiliki tubuh yang berbuku-buku dan aktivitas berganti kulit luar atau eksosekeleton secara periodik/molting.
1. Tanah Tambak
Tanah yang digunakan untuk tambak udang sebaiknya jenis tanah liat berpasir untuk menghindari kebocoran air (Haliman dan Adijaya, 2004). Kondisi dasar tambak dapat berubah setiap waktu yang dipengaruhi oleh akumulasi residu bahan organik yang semakin meningkat seperti, ganggang yang mati, feses dan residu makanan yang menyebabkan tingginya konsumsi oksigen dan kurangnya tingkat pertumbuhan (Boyd, 1995 dalam Avnimelech et al., 2003).
Menurut Avnimelech et al. (2003), di kolam dengan kontruksi dasar tanah akan terjadi sedimentasi dari plankton dan residu makanan yang akan menyebabkan kondisi dasar tanah memburuk karena terjadi perubahan bahan di dasar tanah. Akumulasi yang berlebihan dari residu bahan organik akan menyebabkan perkembangan lingkungan anaerob, penurunan perkembangan biota, peningkatan kebutuhan oksigen, penghambatan pertumbuhan biota dan pembusukan dasar kolam. Residu bahan organik dan nutrien yang ada di dalam kolam cenderung terakumulasi di dalam tanah sehingga beberapa bahan dapat hilang dari dalam air.
Kondisi substrat merupakan faktor kritis untuk udang jika dibandingkan dengan budidaya ikan lainnya sebab udang hidup di dasar perairan (Boyd, 1989; Chien, 1989 dalam Ritvo et al., 1996). Pembentukan kondisi anaerob juga dipengaruhi oleh faktor produksi dan tingkat intensifikasi budidaya (Avnimelech et al., 2003).
2. Sulfur
Sulfur adalah unsur kimia dalam tabel periodik yang memiliki lambang S dan nomor atom 16. Bentuk sulfur adalah non-metal yang tak berasa, tak berbau dan multivalent. Sulfur dalam bentuk aslinya merupakan sebuah zat padat kristalin kuning. Di alam belerang atau sulfur ini dapat ditemukan sebagai unsur murni atau sebagai mineral-mineral sulfit dan sulfat (http://id.wikipedia.org. 2008). Sulfur (S) berada dalam bentuk organik dan anorganik.
3. Sulfat
Ion sulfat yang bersifat larut dan merupakan bentuk oksidasi utama sulfur adalah salah satu anion utama di perairan (Effendi, 2003). Sulfat yang berikatan dengan hidrogen membentuk asam sulfat dan sulfat yang berikatan dengan logam alkali merupakan bentuk sulfur yang paling banyak ditemukan di danau dan sungai (Cole, 1988 dalam Effendi, 2003). Sulfat merupakan sulfur yang paling banyak dioksidasi, dan menjadi salah satu anion utama dalam air laut (Madigan et al., 1996). Kadar sulfat pada perairan tawar alami berkisar antara 2-80 mg/liter (Effendi, 2003).
4. Hidrogen Sulfida (H2S)
Hidrogen sulfida (H2S) merupakan gas yang tidak berwarna, toksik dengan bau yang sangat busuk. Menurut Wyk dan Scarpa (1999), H2S terjadi karena dekomposisi bahan organik dalam keadaan anaerob. Reduksi anion sulfat menjadi hidrogen sulfida dalam proses dekomposisi bahan organik menimbulkan bau yang kurang sedap dan meningkatkan korosivitas logam.
Sumber utama H2S adalah dekomposisi bahan organik oleh bakteri terotrof tanah (Desulfovibrio spp) dalam kondisi anaerob.
Pada kondisi aerob, hidrogen sulfida akan dioksidasi oleh bakteri Thiobacillus menjadi sulfat. Beberapa bakteri, misalnya Chlorobactriaceae dan Thiorhordaceae dapat mengoksidasi hidrogen sulfida menjadi sulfur. Perubahan hidrogen sulfida menjadi sulfur juga dapat terjadi dalam proses sintesis karbohidrat. Dalam reaksi tersebut (persamaan 1.3), hidrogen sulfida digunakan sebagai sumber hidrogen donor untuk membentuk kembali unsur sulfur, sebagai hasil samping dari sintesis karbohidrat (Effendi, 2003).
Cahaya
CO2 + 2H2S (CH2O) + H2O + 2S
Karbohidrat
Toksisitas H2S akan meningkat seiring dengan penurunan kadar oksigen terlarut. Selain itu, H2S juga berdisosiasi ke dalam suatu kesetimbangan campuran dari HS- dan H+, proporsinya ditentukan oleh pH, suhu, dan salinitas. Kadar sulfida total kurang dari 0,002 mg/liter dianggap tidak membahayakan kelangsungan hidup organisme akuatik (Wyk dan Scarpa, 1999). Hidrogen sulfida sangat beracun bagi udang vaname meskipun pada konsentrasi rendah ± 0,05 mg/liter (Hanggono, 2005).
5. Arang Sekam Sekam Padi
Salah satu bentuk limbah pertanian adalah sekam yang merupakan buangan pengolahan padi. Sekam padi merupakan lapisan keras yang membungkus kariopsis butir gabah, terdiri atas dua belahan yang disebut lemma dan palea yang saling bertautan. Pada proses penggilingan gabah, sekam akan terpisah dari butir beras dan menjadi bahan sisa atau limbah penggilingan. Dari proses penggilingan gabah akan dihasilkan 16,3-28% sekam (Nugraha dan Setyawati, 2001).
Sekam dikategorikan sebagai biomassa yang dapat digunakan untuk berbagai kebutuhan seperti bahan baku industri, pakan ternak, dan energi (Nugraha dan Setyawati, 2001). Ditinjau dari komposisi kimiawinya, sekam mengandung beberapa unsur penting seperti terlihat pada. Tabel 1. Komposisi kimiawi sekam
Komponen Kandungan (%) Kadar air 9,02
Protein kasar 3,03
Lemak 1,18
Serat kasar 35,68
Abu 17,71
Karbohidrat kasar 33,71
Sumber : Suharno (1979) dalam Nugraha dan Setyawati (2001)
A. Pembuatan Arang Sekam
Pembuatan arang sekam dimaksudkan untuk memperbaiki sifat fisik sekam agar lebih mudah ditangani dan dimanfaatkan lebih lanjut. Salah satu kelemahan sekam bila digunakan langsung sebagai sumber energi panas adalah menimbulkan asap dan warna bahan berubah sehingga menurunkan kualitas bahan di samping menimbulkan polusi udara (Nugraha dan Setyawati, 2001). Tabel 2. Komposisi kimia arang sekam
Komponen Kandungan (%)
Karbon (zat arang) 1,33
Hidrogen 1,54
Oksigen 33,64
Silika (SiO2) 16,98
Sumber : DTC-IPB dalam Nugraha dan Setyawati (2001)
Pembuatan arang sekam dapat dilakukan dengan berbagai cara, salah satunya adalah pembakaran dengan sistem cerobong asap. Cerobong mempunyai diameter 10 cm, tinggi 1 m dan di sepanjang silinder dibuat lubang. Pada bagian bawah cerobong dibuat rumah cerobong berbentuk segi empat. Pembuatan arang sekam dilakukan dengan cara meletakkan bara api di lantai kemudian ditutup dengan sekam (Nugraha dan Setyawati, 2001).
B. Pencucian Tanah Tambak Menggunakan Air Tawar
Prinsip dari pencucian tanah tambak dengan menggunakan air tawar ini hampir sama dengan prinsip pergantian air di kolam. Penggunaan air tawar ini bertujuan untuk melarutkan kandungan H2S yang konsentrasinya sangat tinggi yang terdapat pada tanah tambak pascapanen.
Air tawar digunakan sebagai media pencucian karena air tawar mempunyai kandungan sulfur yang sangat kecil (5 mg/liter) jika dibandingkan dengan air laut yang kandungan sulfurnya sangat tinggi hingga 900 mg/liter (Boyd, 1990).
C. Kapur
Kapur yang digunakan di tambak (Tabel 3) berfungsi untuk meningkatkan kesadahan dan alkalinitas air membentuk sistem penyangga (buffer) yang kuat, meningkatkan pH, desinfektan, mempercepat dekomposisi bahan organik, mengendapkan besi, menambah ketersediaan unsur P, dan merangsang pertumbuhan plankton serta benthos (Chanratchakool, 1995). Bentuk kapur yang paling tepat digunakan pada air payau atau salin (air laut) adalah kapur bakar CaO atau kapur hidrat Ca(OH)2, karena kalsium karbonat CaCO3 kurang larut dalam air laut.
Kesimpulan
Pengolahan tanah tambak dengan cara membakar sekam di atas permukaan tanah cenderung menghasilkan nilai amoniak terlarut paling kecil (p<0 span="" style="letter-spacing: .25pt;"> selama 30 hari masa pemeliharaan dibanding dengan dua cara pengolahan tanah lainnya. Demikian juga terhadap kadar total sulfur hingga 20 hari masa pemeliharaan (p<0 span="" style="letter-spacing: -.15pt;">
Kadar total sufur pada ketiga cara pengolahan tanah tambak cenderung naik setelah 30 hari masa pemeliharaan. Ketiga cara pengolahan tanah tambak memberikan frekuensi molting yang sama yaitu 10 hari
sekali.
Cara pengolahan tanah dengan bakar sekam menghasilkan tingkat kelangsungan hidup, biomassa (p<0 sam="" span="" style="letter-spacing: -.05pt;" tertinggi="" yang="">pai 30 hari pemeliharaan, sedangkan laju pertumbuhan bobot harian (p<0 span="" style="letter-spacing: .3pt;">
dan efisiensi pakan (p<0 span="" style="letter-spacing: -.05pt;">,05) yang lebih baik daripada cara pengolahan tanah tambak dengan pengangkatan lapisan lumpur dan pencucian air tawar sampai 20 hari pemeliharaan.
0>0>0>0>0>
Oleh karena itu, diperlukan cara pengolahan tanah tambak lain yang lebih maksimal dalam mengurangi konsentrasi hidrogen sulfida dan amoniak. Pada percobaan ini dikaji cara pengolahan tanah tambak dengan pengangkatan lapisan lumpur yang selanjutnya disertai pembakaran sekam dan pengangkatan lapisan lumpur yang selanjutnya disertai pencucian air tawar.
Pada percobaan pendahuluan dilakukan pengujian dengan metode HCl dan Zn asetat terhadap tanah dari beberapa cara pengolahan tanah tambak. Pada percobaan ini didapatkan hasil bahwa dengan cara pengangkatan lapisan lumpur yang selanjutnya disertai pembakaran sekam di atas tanah merupakan cara yang mampu menghilangkan hidrogen sulfida paling maksimal. Pada percobaan pendahuluan dengan metode pengangkatan lapisan lumpur yang selanjutnya disertai pencucian air tawar didapatkan hasil bahwa pengurangan konsentrasi H2S secara maksimal terdapat pada pergantian air ke tiga dan masing-masing dua kali pengadukan. Percobaan lanjutan perlu dilakukan untuk mengetahui cara pengolahan tanah tambak yang efektif dalam memperbaiki kualitas tanah tambak yang mendukung kehidupan udang vaname melalui kajian pertumbuhan dan kelangsungan hidup. 2.1 Biologi Udang Vaname
Udang vaname adalah salah satu spesies udang dan potensial untuk dikembangkan secara komersial. Pada tahun 2008 rata-rata produksi udang mencapai 11,6 % dari seluruh hasil budidaya (Direktorat Jenderal Perikanan Budidaya, 2009).
Menurut Boone (1931), udang vaname mempunyai klasifikasi dan tata nama sebagai berikut :
Kingdom : Animalia
Filum : Arthropoda
Subfilum : Crustacea
Kelas : Malacostraca
Subkelas : Eumalacostraca
Superordo : Eucarida
Ordo : Decapoda
Subordo : Dendrobrachiata
Famili : Penaeidae
Genus : Litopenaeus
Species : Litopenaeus vannamei
Menurut Haliman dan Adijaya (2004), secara morfologi udang vaname memiliki tubuh yang dibentuk oleh dua cabang (biramous) yaitu exopodite dan endopodite. Udang vaname memiliki tubuh yang berbuku-buku dan aktivitas berganti kulit luar atau eksosekeleton secara periodik/molting.
1. Tanah Tambak
Tanah yang digunakan untuk tambak udang sebaiknya jenis tanah liat berpasir untuk menghindari kebocoran air (Haliman dan Adijaya, 2004). Kondisi dasar tambak dapat berubah setiap waktu yang dipengaruhi oleh akumulasi residu bahan organik yang semakin meningkat seperti, ganggang yang mati, feses dan residu makanan yang menyebabkan tingginya konsumsi oksigen dan kurangnya tingkat pertumbuhan (Boyd, 1995 dalam Avnimelech et al., 2003).
Menurut Avnimelech et al. (2003), di kolam dengan kontruksi dasar tanah akan terjadi sedimentasi dari plankton dan residu makanan yang akan menyebabkan kondisi dasar tanah memburuk karena terjadi perubahan bahan di dasar tanah. Akumulasi yang berlebihan dari residu bahan organik akan menyebabkan perkembangan lingkungan anaerob, penurunan perkembangan biota, peningkatan kebutuhan oksigen, penghambatan pertumbuhan biota dan pembusukan dasar kolam. Residu bahan organik dan nutrien yang ada di dalam kolam cenderung terakumulasi di dalam tanah sehingga beberapa bahan dapat hilang dari dalam air.
Kondisi substrat merupakan faktor kritis untuk udang jika dibandingkan dengan budidaya ikan lainnya sebab udang hidup di dasar perairan (Boyd, 1989; Chien, 1989 dalam Ritvo et al., 1996). Pembentukan kondisi anaerob juga dipengaruhi oleh faktor produksi dan tingkat intensifikasi budidaya (Avnimelech et al., 2003).
2. Sulfur
Sulfur adalah unsur kimia dalam tabel periodik yang memiliki lambang S dan nomor atom 16. Bentuk sulfur adalah non-metal yang tak berasa, tak berbau dan multivalent. Sulfur dalam bentuk aslinya merupakan sebuah zat padat kristalin kuning. Di alam belerang atau sulfur ini dapat ditemukan sebagai unsur murni atau sebagai mineral-mineral sulfit dan sulfat (http://id.wikipedia.org. 2008). Sulfur (S) berada dalam bentuk organik dan anorganik.
3. Sulfat
Ion sulfat yang bersifat larut dan merupakan bentuk oksidasi utama sulfur adalah salah satu anion utama di perairan (Effendi, 2003). Sulfat yang berikatan dengan hidrogen membentuk asam sulfat dan sulfat yang berikatan dengan logam alkali merupakan bentuk sulfur yang paling banyak ditemukan di danau dan sungai (Cole, 1988 dalam Effendi, 2003). Sulfat merupakan sulfur yang paling banyak dioksidasi, dan menjadi salah satu anion utama dalam air laut (Madigan et al., 1996). Kadar sulfat pada perairan tawar alami berkisar antara 2-80 mg/liter (Effendi, 2003).
4. Hidrogen Sulfida (H2S)
Hidrogen sulfida (H2S) merupakan gas yang tidak berwarna, toksik dengan bau yang sangat busuk. Menurut Wyk dan Scarpa (1999), H2S terjadi karena dekomposisi bahan organik dalam keadaan anaerob. Reduksi anion sulfat menjadi hidrogen sulfida dalam proses dekomposisi bahan organik menimbulkan bau yang kurang sedap dan meningkatkan korosivitas logam.
Sumber utama H2S adalah dekomposisi bahan organik oleh bakteri terotrof tanah (Desulfovibrio spp) dalam kondisi anaerob.
Pada kondisi aerob, hidrogen sulfida akan dioksidasi oleh bakteri Thiobacillus menjadi sulfat. Beberapa bakteri, misalnya Chlorobactriaceae dan Thiorhordaceae dapat mengoksidasi hidrogen sulfida menjadi sulfur. Perubahan hidrogen sulfida menjadi sulfur juga dapat terjadi dalam proses sintesis karbohidrat. Dalam reaksi tersebut (persamaan 1.3), hidrogen sulfida digunakan sebagai sumber hidrogen donor untuk membentuk kembali unsur sulfur, sebagai hasil samping dari sintesis karbohidrat (Effendi, 2003).
Cahaya
CO2 + 2H2S (CH2O) + H2O + 2S
Karbohidrat
Toksisitas H2S akan meningkat seiring dengan penurunan kadar oksigen terlarut. Selain itu, H2S juga berdisosiasi ke dalam suatu kesetimbangan campuran dari HS- dan H+, proporsinya ditentukan oleh pH, suhu, dan salinitas. Kadar sulfida total kurang dari 0,002 mg/liter dianggap tidak membahayakan kelangsungan hidup organisme akuatik (Wyk dan Scarpa, 1999). Hidrogen sulfida sangat beracun bagi udang vaname meskipun pada konsentrasi rendah ± 0,05 mg/liter (Hanggono, 2005).
5. Arang Sekam Sekam Padi
Salah satu bentuk limbah pertanian adalah sekam yang merupakan buangan pengolahan padi. Sekam padi merupakan lapisan keras yang membungkus kariopsis butir gabah, terdiri atas dua belahan yang disebut lemma dan palea yang saling bertautan. Pada proses penggilingan gabah, sekam akan terpisah dari butir beras dan menjadi bahan sisa atau limbah penggilingan. Dari proses penggilingan gabah akan dihasilkan 16,3-28% sekam (Nugraha dan Setyawati, 2001).
Sekam dikategorikan sebagai biomassa yang dapat digunakan untuk berbagai kebutuhan seperti bahan baku industri, pakan ternak, dan energi (Nugraha dan Setyawati, 2001). Ditinjau dari komposisi kimiawinya, sekam mengandung beberapa unsur penting seperti terlihat pada. Tabel 1. Komposisi kimiawi sekam
Komponen Kandungan (%) Kadar air 9,02
Protein kasar 3,03
Lemak 1,18
Serat kasar 35,68
Abu 17,71
Karbohidrat kasar 33,71
Sumber : Suharno (1979) dalam Nugraha dan Setyawati (2001)
A. Pembuatan Arang Sekam
Pembuatan arang sekam dimaksudkan untuk memperbaiki sifat fisik sekam agar lebih mudah ditangani dan dimanfaatkan lebih lanjut. Salah satu kelemahan sekam bila digunakan langsung sebagai sumber energi panas adalah menimbulkan asap dan warna bahan berubah sehingga menurunkan kualitas bahan di samping menimbulkan polusi udara (Nugraha dan Setyawati, 2001). Tabel 2. Komposisi kimia arang sekam
Komponen Kandungan (%)
Karbon (zat arang) 1,33
Hidrogen 1,54
Oksigen 33,64
Silika (SiO2) 16,98
Sumber : DTC-IPB dalam Nugraha dan Setyawati (2001)
Pembuatan arang sekam dapat dilakukan dengan berbagai cara, salah satunya adalah pembakaran dengan sistem cerobong asap. Cerobong mempunyai diameter 10 cm, tinggi 1 m dan di sepanjang silinder dibuat lubang. Pada bagian bawah cerobong dibuat rumah cerobong berbentuk segi empat. Pembuatan arang sekam dilakukan dengan cara meletakkan bara api di lantai kemudian ditutup dengan sekam (Nugraha dan Setyawati, 2001).
B. Pencucian Tanah Tambak Menggunakan Air Tawar
Prinsip dari pencucian tanah tambak dengan menggunakan air tawar ini hampir sama dengan prinsip pergantian air di kolam. Penggunaan air tawar ini bertujuan untuk melarutkan kandungan H2S yang konsentrasinya sangat tinggi yang terdapat pada tanah tambak pascapanen.
Air tawar digunakan sebagai media pencucian karena air tawar mempunyai kandungan sulfur yang sangat kecil (5 mg/liter) jika dibandingkan dengan air laut yang kandungan sulfurnya sangat tinggi hingga 900 mg/liter (Boyd, 1990).
C. Kapur
Kapur yang digunakan di tambak (Tabel 3) berfungsi untuk meningkatkan kesadahan dan alkalinitas air membentuk sistem penyangga (buffer) yang kuat, meningkatkan pH, desinfektan, mempercepat dekomposisi bahan organik, mengendapkan besi, menambah ketersediaan unsur P, dan merangsang pertumbuhan plankton serta benthos (Chanratchakool, 1995). Bentuk kapur yang paling tepat digunakan pada air payau atau salin (air laut) adalah kapur bakar CaO atau kapur hidrat Ca(OH)2, karena kalsium karbonat CaCO3 kurang larut dalam air laut.
Kesimpulan
Pengolahan tanah tambak dengan cara membakar sekam di atas permukaan tanah cenderung menghasilkan nilai amoniak terlarut paling kecil (p<0 span="" style="letter-spacing: .25pt;"> selama 30 hari masa pemeliharaan dibanding dengan dua cara pengolahan tanah lainnya. Demikian juga terhadap kadar total sulfur hingga 20 hari masa pemeliharaan (p<0 span="" style="letter-spacing: -.15pt;">
Kadar total sufur pada ketiga cara pengolahan tanah tambak cenderung naik setelah 30 hari masa pemeliharaan. Ketiga cara pengolahan tanah tambak memberikan frekuensi molting yang sama yaitu 10 hari
sekali.
Cara pengolahan tanah dengan bakar sekam menghasilkan tingkat kelangsungan hidup, biomassa (p<0 sam="" span="" style="letter-spacing: -.05pt;" tertinggi="" yang="">pai 30 hari pemeliharaan, sedangkan laju pertumbuhan bobot harian (p<0 span="" style="letter-spacing: .3pt;">
dan efisiensi pakan (p<0 span="" style="letter-spacing: -.05pt;">,05) yang lebih baik daripada cara pengolahan tanah tambak dengan pengangkatan lapisan lumpur dan pencucian air tawar sampai 20 hari pemeliharaan.
0>0>0>0>0>
0 comments:
Post a Comment