Teknologi bioflok (BFT) merupakan salah satu teknologi yang saat ini sedang dikembangkan dalam akuakultur yang bertujuan untuk memperbaiki kualilas air dan meningkatkan efisiensi pemanfaatan nutrient. Teknologi ini didasarkan pada konversi nitrogen anorganik terutama ammonia oleh bakteri heterotrof menjadi biomassa mikroba yang kemudian dapat dikonsumsi oleh organisme budidaya.
Intensifikasi membutuhkan lebih banyak input produksi terutama benih dan pakan serta sistem manajemen yang lebih baik. Pada sistem budidaya intensif, keberadaan dan ketergantungan terhadap pakan alami sangat dibatasi, sehingga pakan buatan menjadi satu-satunya sumber makanan bagi organisme yang dipelihara (Tacon, 1987). Organisme akuatik umumnya membutuhkan protein yang cukup tinggi dalam pakannya. Namun demikian organism akuatik hanya dapat meretensi protein sekitar 20 - 25% dan selebihnya akan terakumulasi dalam air (Stickney, 2005). Metabolisme protein oleh organisme akuatik umumnya menghasilkan ammonia sebagai hasil ekskresi. Pada saat yang sama protein dalam feses dan pakan yang tidak termakan akan diuraikan oleh bakteri menjadi produk yang sama. Dengan demikian semakin intensif suatu kegiatan budidaya akan diikuti dengan semakin tingginya konsentrasi senyawa nitrogen terutama ammonia dalam air (Avnimelech, 2007).
Agar tidak membahayakan organisme yang dibudidayakan, maka konsentrasi ammonia dalam media budidaya harus dibatasi. Pergantian air merupakan metoda yang paling umum dalam membatasi konsentrasi ammonia dalam air. Namun demikian metoda ini membutuhkan air dalam jumlah besar serta dapat mencemari lingkungan pcrairan sekitar jika air yang dibuang tidak diberi perlakuan lebih lanjut. Seiiring dengan berkembangnya akuakultur sistem intensif berbagai teknik pengolahan air untuk mengurangi konsentrasi ammonia dalam media budidaya telah dikembangkan salah satunya adalah teknologi bioflok.
Nitrogen dalam sistem akuakultur
Nitrogen dalam sistem akuakultur terutama berasal dari pakan buatan yang biasanya mengandung protein dengan kisaran 13 - 60% (2 - 10% N) tergantung pada kebutuhan dan stadia organisme yang dikultur (Avnimeleeh & Ritvo, 2003; Gross & Boyd 2000; Stickney, 2005). Dari total protein yang masuk ke dalam sistem budidaya, sebagian akan dikonsumsi oleh organisme budidaya dan sisanya terbuang ke dalam air. Proses metabolisme pakan yang dikonsumsi dalam tubuh organisme budidaya kemudian akan menghasilkan biomasa dan sisa metabolisme berupa urine dan feses. Protein dalam pakan akan dicerna namun hanya 20 - 30% dari total nitrogen dalam pakan dimanfaatkan menjadi biomasa ikan (Brune et al., 2003). Katabolisme protein dalam tubuh organisme akuatik menghasilkan ammonia sebagai hasil akhir dan diekskresikan dalam bentuk ammonia (NH3) tidak terionisasi melalui insang (Ebeling et al., 2006; Hargreaves, 1998). Pada saat yang sama, bakteri memineralisasi nitrogen organik dalam pakan yang tidak termakan dan feses menjadi ammonia (Gross and Boyd, 2000). Sebagai akibat dari berlangsungnya kedua proses ini, aplikasi pakan berprotein tinggi dalam sistem budidaya akan menghasilkan akumulasi ammonia baik sebagai hasil ekskresi dari organisme yang dikultur maupun hasil mineralisasi bakteri. Dalam air, ammonia berada dalam dua bentuk yaitu ammonia tidak terionisasi (NH3) dan ammonia terionisasi (NH4+). Jumlah total kedua bentuk ammonia ini disebut juga dengan total ammonia nitrogen atau TAN (Ebeling et al., 2006). Konsentrasi relatif dari kedua bentuk ammonia terutama tergantung pada pH, temperatur dan salinitas. Keberadaan ammonia tidak terionisasi di dalam media budidaya sangat dihindari karena bersifat toksik bagi organisme akuatik bahkan pada konsentrasi yang rendah. Stickney (2005) menyatakan bahwa konsentrasi ammonia dalam media budidaya harus lebih rendah dari 0,8 mg/L.
Dalam sistem akuakultur, secara alami terjadi siklus nitrogen dalam air (Gambar 1) dengan input nitrogen paling utama berasal dari pakan buaian (Crab et al., 2007). Dari sejumlah pakan yang dimasukkan kc kolam, sebagian tidak termakan oleh ikan, sementara pakan yang dikonsumsi sebagian dikonversi mcnjadi biomasa ikan dan sebagian lagi diekskresikan sebagai ammonia atau dikeluarkan sebagai feses. Pakan yang tidak termakan dan feses akan tcrdckomposisi oleh bakteri yang diikuti dengan pelepasan ammonia yang kemudian terakumulasi dalam air bersaraa dengan hasil ekskresi ikan. Melalui peranan bakteri nitrifikasi dan denitrifikasi yang terdapat dalam air dan sedimcn, TAN dalam air kemudian dapat ditransformasi menjadi nitrit, nitrat dan gas nitrogen (Ebeling et al., 2006; Hargreaves, 1998). Selain itu TAN dan nitrat dapat diasimilasi oleh fitoplankton atau tanaman yang terdapat dalam air yang kemudian dapat dimanfaatkan oleh organisme budidaya yang memang dapat memanfaatkannya. Secara garis besar ketiga proses alami konversi N tersebut dikelompokkan menjadi tiga yaitu konversi secara fotoautotrofik oleh alga dan tanaman air, secara kemoautotrofik melalui oksidasi oleh bakteri nitrifikasi dan immobilisasi secara heterotrofik oleh bakteri heterotrof (Ebeling et al., 2006).
Crab et at. (2007) menyatakan bahwa eliminasi kelebihan N terutama ammonia, nitrit dan nitrat dalam sistem budidaya dapat dikelompokkan menjadi dua, yaitu eliminasi N di luar wadah budidaya dan di dalam wadah budidaya. Eliminasi N di luar wadah budidaya dibedakan menjadi beberapa jenis seperti kolam perlakuan (atau reservoir) dan kombinasi bak sedimentasi dan bak nitrifikasi (biofilter). Sementara eliminasi N dalam wadah budidaya dilakukan dengan prinsip utama konversi N oleh bakteri heterotrof dan fitoplankton. Dua metoda eliminasi N dalam media budidaya yang sedang berkembang adalah sistem perifiton dan teknologi bioflok
Teknologi Bioflok
Teknologi bioflok merupakan salah satu alternatif baru dalam mengalasi masalah kualitas air dalam akuakultur yang diadaptasi dari teknik pcngolahan limbah domestik secara konvensional (Avnimelech, 2006; de Schryver et al., 2008). Prinsip utama yang diterapkan dalam teknologi ini adalah manajemen kualitas air yang didasarkan pada kemampuan bakteri heterotrof untuk memanfaatkan N organik dan anorganik yang terdapat di dalam air.
Pada kondisi C dan N yang seimbang dalam air, bakteri heterotrof yang merupakan akan memanfaatkan N, baik dalam bentuk organik maupun anorganik, yang terdapat dalam air untuk pembentukan biomasa sehingga konsentrasi N dalam air menjadi berkurang (de Schryver et al., 2008). Secara teoritis, pemanfaatan N oleh bakteri heterotrof dalam sistem akuakultur disajikan dalam reaksi kimia berikut (Ebeling et al., 2006):
NH4+ + 1.18C6H12O6 + HC03- + 2.06O2 C5H7O2N + 6.06H2O + 3.07CO2
Dari persamaan tersebut maka dapat diketahui bahwa secara teoritis untuk mengkonversi setiap gram N dalam bentuk ammonia, diperlukan 6,07 g karbon organik dalam bentuk karbohidrat, 0,86 karbon anorganik dalam bentuk alkalinitas dan 4,71 g oksigen terlarut. Dari persamaan ini juga diperoleh bahwa rasio C/N yang diperlukan oleh bakteri heterotrof adalah sekitar 6. Goldman (1987) menyatakan bahwa pada substrat dengan rasio C/N sama dengan atau lebih dari 10, bakteri heterotrof tidak akan meregenerasi ammonia dari hasil kalabolisme bahan organik (asam amino) dan sebaliknya akan memanfaatkannya untuk membentuk sel baru. Sebaliknya, pada rasio C/N yang rendah (<1 10="" 2006="" akan="" ammonia="" aplikasi="" argreaves="" atau="" avnimelech="" bahwa="" bakteri="" bioflok="" c="" diupayakan="" heterotrof="" ke="" lebih.="" lingkungannya="" maka="" melepaskan="" mencapai="" menyatakan="" rasio="" span="" teknologi="" untuk="">
Teknologi bioflok, sering disebut juga dengan teknik suspensi aktif (activated suspension technique, AST), menggunakan aerasi konstan untuk memungkinkan terjadinya proses dekomposisi secara aerobik dan menjaga flok bakteri berada dalam suspensi (Azim et al., 2007). Dalam sistem ini, bakteri heterotrof yang tumbuh dengan kepadatan yang tinggi berfungsi sebagai bioreaktor yang mengontrol kualitas air terutama konsentrasi N serta sebagai sumber protein bagi organisme yang dipelihara.
Pembentukan bioflok oleh bakteri terutama bakteri heterotrof secara umum bertujuan untuk meningkatkan pemanfaatan nutrien. menghindari stress lingkungan dan predasi (Bossier & Verstraete, 1996; de Schryver et al., 2008). Flok bakteri tersusun atas campuran berbagai jenis mikro-organisme (bakteri pembentuk flok, bakteri filamen, fungi), partikel-partikel tersuspensi, berbagai koloid dan polimer organik, berbagai kation dan sel-sel mati (Jorand et al., 1995, Verstraete, et al., 2007; de Schryver et al., 2008) dengan ukuran bervariasi dengan kisaran 100 - 1000 µm (Azim et al., 2007; de Schryver et al., 2008). Selain flok bakteri, berbagai jenis organisme lain juga ditemukan dalam bioflok scperti protozoa, rotifer dan oligochaeta (Azim et al., 2007; Ekasari, 2008).
Komposisi organisme dalam flok akan mempengaruhi struktur bioflok dan kandungan nutrisi bioflok (Izquierdo, et al., 2006; Ju et al., 2008). Ju et al. (2008) melaporkan bahwa bioflok yang didominasi oleh bakteri dan mikroalga hijau mengandung protein yang lebih tinggi (38 dan 42% protein) daripada bioflok yang didominasi oleh diatom (26%).
Kondisi lingkungan abiotik juga berpengaruh terhadap pembentukan bioflok seperti rasio C/N, pH, temperatur dan kecepatan pcngadukan (de Scryver et al., 2008; Van Wyk & Avnimeleeh, 2007).
Sementara menurut de Schryver et al. (2008), mekanisme pembentukan flok oleh komunitas bakteri merupakan proses yang kompleks yang merupakan kombinasi berbagai fenomena fisika, kimia dan biologis seperti interaksi permukaan bakteri secara fisik dan kimiawi, dan quorum sensing sebagai kontrol biologis.
Aplikasi teknologi bioflok dalam akuakultur
Hingga saat ini teknologi bioflok telah diaplikasikan pada budidaya ikan dan udang seperti nila, sturgeon, snook, udang putih dan udang windu (Arnold et al., 2009;
Avnimeleeh, 2005, 2007; Burford et al., 2003, 2004; Hari et al., 2004; Serfling, 2006).
Beberapa penelitian menunjukkan bahwa aplikasi teknologi bioflok berperan dalam perbaikan kualitas air, peningkatan biosekuriti, peningkatan produktivitas. peningkatan efisiensi pakan serta penurunan biaya produksi melalui penurunan biaya pakan (Avnimelech, 2007; Crab et al., 2008, 2009; Ekasari, 2008; Hari et al., 2006, Kuhn et al., 2009; Taw, 2005).
Kemampuan bioflok dalam mengontrol konsentrasi ammonia dalam sistem akuakultur secara teoritis maupun aplikasi telah terbukti sangat tinggi. Secara teoritis Ebeling et al. (2006) dan Mara (2004) menyatakan bahwa immobilisasi ammonia oleh bakteri heterotrof 40 kali lebih cepat daripada oleh bakteri nitrifikasi. Secara aplikasi de Schryver et al. (2009) menemukan bahwa bioflok yang ditumbuhkan dalam bioreaktor dapat mengkonversi N dengan konsentrasi 110 mg NH4/L hingga 98% dalam sehari. Penelitian ini menunjukkan bahwa bioflok memiliki kapasitas yang besar dalam mengkonversi nitrogen anorganik dalam air, sehingga dapat memperbaiki kualitas air dengan lebih cepat. Hasil-hasil penelitian mengenai aplikasi bioflok dalam kegiatan akuakultur secara langsung juga menunjukkan bahwa kualitas media pemcliharaan, pertumbuhan dan efisiensi pakan udang windu yang dipelihara dengan peningkatan rasio C/N secara signifikan lebih baik daripada kontrol (Hari et al. 2004,2006; Samocha et al., 2007). Peningkatan efisiensi pakan juga ditunjukkan oleh beberapa penelitian aplikasi bioflok (Azim & Little, 2008; Hari et al., 2004, 2006). Hal ini menunjukkan bahwa keberadaan bioflok sebagai suplemen pakan telah meningkatkan efisiensi pemanfaatan nutrien pakan secara keseluruhan, Beberapa penelitian menunjukkan bahwa bioflok dapat dimanfaatkan, baik secara langsung maupun sebagai tepung untuk bahan baku pakan (Azim & Little, 2008; Ekasari, 2008; Kuhn et al., 2008; 2009). Adapun kandungan nutrisi bioflok umumnya beragam pada setiap penelitian (Tabel 1) namun dapat mememuhi kebutuhan organisme akuatik pada umumnya, Craig & Helfrich (2002) menyatakan bahwa pakan ikan sebaiknya mengandung 18 - 50% protein, 10 - 25% lemak, 15 - 20% karbohidrat, <8 1="" 2009="" 20="" 240="" 25="" abu="" aerasi="" al.="" amp="" aplikasi="" atau="" avnimelech="" bahwa="" baik="" biaya="" bioflok="" budidaya="" dalam="" dan="" dapat="" dari="" data="" dengan="" di="" diberi="" digunakan="" dikembangkan="" dikombinasikan="" dikurangi="" dilakukannya="" diperlukan="" diperoleh="" ditambahkan="" diujicobakan="" energi="" et="" fcr="" hingga="" ikan="" indonesia="" ini="" isotop="" juga="" kepadatan="" kg="" kochba="" kontrol.="" kurang="" lebih="" melaporkan="" memanfaatkan="" menggunakan="" menunjukkan="" menurunkan="" mg="" mineral.="" n="" nila="" nitrogen="" oleh="" pada="" pakan.="" panen="" parsial.="" parsial="" pemanenan="" pemanfaatan="" pembuatan="" penelitian="" pertumbuhan="" produksi="" protein="" putih="" secara="" sejumlah="" setara="" sistem="" span="" substitusi="" tambak="" taw="" teknologi="" telah="" tepung="" tinggi="" udang="" uhn="" untuk="" vitamin="" yang="">
Pertumbuhan bioflok dalam sistem akuakultur dipcngaruhi oleh fakior kimia, fisika dan biologis dalam air. Beberapa faktor yang perlu diperhatikan untuk mendorong pembentukan bioflok dalam sistem budidaya diantaranya adalah pcrgantian air seminimal mungkin hingga mendekati nol, aerasi kuat serta peningkatan rasio C/N (Van Wyk & Avnimelech, 2007). Menurut Van Wyk & Avnimelech (2007) karakteristik sistem bioflok adalah kebutuhan oksigen yang tinggi dan laju produksi biomas bakteri yang tinggi. Oleh karena itu dalam sistem ini diperlukan aerasi dan pengadukan yang kuat untuk menjamin kebutuhan oksigen baik dari organisme budidaya maupun biomas bakteri serta untuk memastikan bahwa bioflok tetap tersuspensi dalam air dan tidak mengendap. intensitas pengadukan dan kandungan oksigen juga mempengaruhi struktur dan komposisi bioflok (de Schryver et al., 2008). Intensitas pengadukan yang terlalu tinggi dapat mempengaruhi ukuran bioflok sedangkan kandungan oksigen yang terlalu rendah dapat menyebabkan dominasi bakteri filamen pada bioflok yang akan menyebabkan bioflok cenderung terapung.
Pakan buatan yang digunakan dalam kegiatan akuakultur umumnya mengandung protein yang cukup tinggi dengan kisaran 18 - 50% (Craig & Helfrich, 2002) dengan rasio C/N kurang dari 10 (Azim et al., 2007). Hal ini tentunya berdampak pada keseimbangan rasio C/N dalam media budidaya, sehingga untuk penerapan teknologi bioflok, rasio C/N perlu ditingkatkan lagi. Peningkatan rasio C/N dalam air untuk menstimulasi pertumbuhan bakteri heterotrof dapat dilakukan dengan mengurangi kandungan protein dan meningkatkan kandungan karbohidrat dalam pakan (Azim et al., 2007; Tacon et al., 2004) atau dengan menambahkan sumber karbohidrat secara langsung ke dalam air (Avnimelech, 2007: Samocha et al., 2007). Sumber karbohidrat dapat berupa gula sederhana seperti gula pasir atau molase (Ekasari, 2008; Kuhn et al., 2008, 2009; Samocha et al., 2007), atau bahan-bahan pati seperti tepung tapioka, tepung jagung, tepung terigu dan sorgum (Avnimelech, 1999; Hari et al., 2004; Van Wyk & Avnimelech, 2007).
Penambahan kandungan karbohidrat dalam pakan tentunya akan merubah komposisi pakan secara keseluruhan sehingga diperlukan adanya penyesuaian bahan-bahan tertentu dalam pakan seperti peningkatan kadar vitamin dan mineral. Menurut Avnimelech (1999) jumlah karbohidrat yang ditambahkan untuk mendorong pembentukan bioflok dapat dihitung dengan menggunakan rumus berikut:
Karbohidrat (kg)= Pakan (kg) x % N dalam pakan x % ekskresi N/0,05
Penggunaan sumber karbon juga perlu memperhatikan beberapa faktor diantaranya kecepatan pemanfaatan karbohidrat oleh bakteri, kandungan protein dalam sumber karbohidrat itu sendiri, kecernaan karbohidrat oleh organisme budidaya, serta harga per unit karbohidrat. Sumber karbon juga dapat mempengaruhi kandungan nutrisi bioflok seperti yang ditunjukkan dalam Tabel 1 (Crab et al., 2009; de Schryver et al., 2008; Ekasari, 2008). Selain aerasi dan pengadukan, dan penambahan karbon, pembentukan dan struktur bioflok juga dipengaruhi oleh faktor kimia, fisika dan biologis lain scpcrti laju akumulasi bahan organik, temperatur dan pH (de Schryver et a/., 2008).
Selain melalui pengamatan visual dan mikroskopik (Gambar 2), pembentukan dan keberadaan bioflok dalam sistem akuakultur dapat diketahui melalui pengukuran beberapa parameter kimia dan fisika air. Parameter kimia yang sering digunakan sebagai indikator utama keberadaan bioflok meliputi chemical oxygen demand (COD), atau jumlah oksigen yang diperlukan untuk mengoksidasi seluruh bahan organik dalam sampel secara kimiawi, dan biological oxygen demand (BOD) atau jumlah oksigen yang diperlukan oleh mikroorganisme untuk mengkonversi bahan organik melalui proses biokimia. Pada akuakutur dengan sistem bioflok, kebutuhan akan oksigen akan meningkat terutama disebabkan oleh tingginya kepadatan bakteri heterotrof di dalam air dan tentunya berpengaruh pada nilai COD maupun BOD. Parameter fisika yang dapat digunakan untuk mendetcksi keberadaan bioflok adalah suspended solids (SS)f volatile suspended solids (VSS), floc volume index (FVI). Salah satu karakter utama sistem bioflok adalah tingginya padatan tersuspensi terutama VSS yang merupakan indikator tingginya bahan organik tersuspensi dalam air.
Teknologi bioflok di masa depan
Dengan berbagai kelebihan yang telah dijelaskan di atas maka jelaslah bahwa teknologi bioflok merupakan salah satu alteraatif teknologi untuk kegiatan akuakultur yang ramah lingkungan dan berkesinambungan. Namun demikian dalam aplikasi langsung pada akuakultur sistem intensif masih ditemukan beberapa permasalahan dan aspek kajian yang membutuhkan penelitian lebih lanjut seperti kebutuhan energi untuk aerasi dan pengadukan, kestabilan sistem, kandungan nutrisi bioflok serta pengaruh bioflok terhadap transmisi dan infeksi penyakit.
Kepadatan bakteri yang tinggi dalam air akan menyebabkan kebutuhan oksigen yang lebih tinggi sehingga aerasi untuk penyediaan oksigen dalam penerapan teknologi bioflok merupakan salah satu kunci keberhasilan. Selain berperan dalam penyediaan oksigen, aerasi juga berfungsi untuk mengaduk (mixing) air agar bioflok yang tersuspensi dalam kolom air tidak mengendap.
Pengendapan bioflok di dasar wadah harus dihindari selain untuk mencegah terjadinya kondisi anaerobik di dasar wadah akibat akumulasi bioflok, juga untuk memastikan bahwa bioflok tetap dapat dikonsumsi oleh organisme budidaya. Untuk tercapainya tujuan aerasi ini, maka metoda aerasi yang paling tepat untuk sistem bioflok perlu dikaji lebih dalam lagi baik dari segi teknis maupun ekonomis.
Seperti yang dijelaskan pada uraian di atas bahwa pembentukan bioflok merupakan mekanisme yang kompleks yang melibatkan berbagai aspek fisika, kimia dan biologis, sehingga pembahan pada salah satu parameter akan mempengaruhi parameter lain. Azim & Little (2008) menemukan bahwa kualitas air di wadah pemeliharaan dengan perlakuan teknologi bioflok pada pemeliharaan ikan nila cenderung tidak stabil. Tingginya aktivitas respirasi mikroba dalam sistem bioflok juga menyebabkan terjadinya fluktuasi pada pH dan alkalinitas (Azim et al., 2007). Meningkatnya kekeruhan akibat tingginya padatan tersuspensi juga dapat berpengaruh pada kemampuan melihat beberapa jenis ikan sehingga berpengaruh pada jumlah pakan yang dimakan. Laju akumulasi bahan organik, laju konsumsi bioflok oleh organisme budidaya serta laju peningkatan biomas bakteri merupakan faktor-faktor yang harus diketahui untuk mengontrol konsentrasi flok yang optimum dalam air. Jika laju akumulasi bahan organik tinggi maka laju peningkatan biomas bakteri akan tinggi pula. Jika hal ini tidak diikuti dengan laju konsumsi bioflok oleh organisme budidaya maka akan terjadi akumulasi bioflok yang berlebihan yang akhirnya justru akan membuat sistem budidaya menjadi tidak stabil.
Salah satu solusi alternatif dari dua permasalahan di atas adalah dengan memisahkan reaktor bioflok dengan wadah
pemeliharaan (Azim & Little, 2008). Dengan cara tersebut, bioflok dapat berfungsi sebagai biofilter scperti halnya dalam sistem resirkulasi. Bioflok yang dihasilkan dari reaktor ini kemudian dapat dimanfaatkan langsung sebagai pakan untuk organisme budidaya atau dibuat menjadi tepung untuk bahan baku pakan (Kuhn et at., 2008,2009). Tabel 1 menunjukkan bahwa kandungan nutrisi bioflok cenderung tidak stabil dan dipengaruhi oleh berbagai faktor seperti sumber karbon dan komposisi biologisnya. Informasi mengenai kandungan nutrisi bioflok juga masih terbatas pada kandungan nutrisi ulama seperti protein kasar, lemak kasar, kadar abu dan karbohidrat.
Dengan demikian penelitian lanjutan aspck nutrisi bioflok masih perlu dilakukan. Penelitian oleh de Schryver et al. (2009) menunjukkan bahwa bioflok mengandung poly-b-hydroxybutyrate (PHB) berkisar antara 0,9 hingga 16% yang cukup memadai untuk memenuhi kebutuhan ikan akan PHB yang tidak lebih dari 1%. PHB merupakan produk polimer intraselular yang dihasilkan oleh berbagai jenis mikroorganisme sebagai bentuk simpanan energi dan karbon (Defoirdt et al., 2007). Polimer ini diduga mempunyai efek pencegahan dan pengobatan terhadap infeksi Vibrio serta manfaat prebiotik dalam akuakultur (Defoirdt et at., 2007; de Schryver et al., 2008).
KESIMPULAN
Secara teoritis maupun aplikasi, penerapan teknologi bioflok dapat meningkatkan kualitas air melalui pengontrolan konsentrasi ammonia dalam air dan meningkatkan efisiensi pemanfaatan nutrien melalui pemanfaatan bioflok scbagai sumber pakan bagi organisme yang dibudidayakan.8>1>
Intensifikasi membutuhkan lebih banyak input produksi terutama benih dan pakan serta sistem manajemen yang lebih baik. Pada sistem budidaya intensif, keberadaan dan ketergantungan terhadap pakan alami sangat dibatasi, sehingga pakan buatan menjadi satu-satunya sumber makanan bagi organisme yang dipelihara (Tacon, 1987). Organisme akuatik umumnya membutuhkan protein yang cukup tinggi dalam pakannya. Namun demikian organism akuatik hanya dapat meretensi protein sekitar 20 - 25% dan selebihnya akan terakumulasi dalam air (Stickney, 2005). Metabolisme protein oleh organisme akuatik umumnya menghasilkan ammonia sebagai hasil ekskresi. Pada saat yang sama protein dalam feses dan pakan yang tidak termakan akan diuraikan oleh bakteri menjadi produk yang sama. Dengan demikian semakin intensif suatu kegiatan budidaya akan diikuti dengan semakin tingginya konsentrasi senyawa nitrogen terutama ammonia dalam air (Avnimelech, 2007).
Agar tidak membahayakan organisme yang dibudidayakan, maka konsentrasi ammonia dalam media budidaya harus dibatasi. Pergantian air merupakan metoda yang paling umum dalam membatasi konsentrasi ammonia dalam air. Namun demikian metoda ini membutuhkan air dalam jumlah besar serta dapat mencemari lingkungan pcrairan sekitar jika air yang dibuang tidak diberi perlakuan lebih lanjut. Seiiring dengan berkembangnya akuakultur sistem intensif berbagai teknik pengolahan air untuk mengurangi konsentrasi ammonia dalam media budidaya telah dikembangkan salah satunya adalah teknologi bioflok.
Nitrogen dalam sistem akuakultur
Nitrogen dalam sistem akuakultur terutama berasal dari pakan buatan yang biasanya mengandung protein dengan kisaran 13 - 60% (2 - 10% N) tergantung pada kebutuhan dan stadia organisme yang dikultur (Avnimeleeh & Ritvo, 2003; Gross & Boyd 2000; Stickney, 2005). Dari total protein yang masuk ke dalam sistem budidaya, sebagian akan dikonsumsi oleh organisme budidaya dan sisanya terbuang ke dalam air. Proses metabolisme pakan yang dikonsumsi dalam tubuh organisme budidaya kemudian akan menghasilkan biomasa dan sisa metabolisme berupa urine dan feses. Protein dalam pakan akan dicerna namun hanya 20 - 30% dari total nitrogen dalam pakan dimanfaatkan menjadi biomasa ikan (Brune et al., 2003). Katabolisme protein dalam tubuh organisme akuatik menghasilkan ammonia sebagai hasil akhir dan diekskresikan dalam bentuk ammonia (NH3) tidak terionisasi melalui insang (Ebeling et al., 2006; Hargreaves, 1998). Pada saat yang sama, bakteri memineralisasi nitrogen organik dalam pakan yang tidak termakan dan feses menjadi ammonia (Gross and Boyd, 2000). Sebagai akibat dari berlangsungnya kedua proses ini, aplikasi pakan berprotein tinggi dalam sistem budidaya akan menghasilkan akumulasi ammonia baik sebagai hasil ekskresi dari organisme yang dikultur maupun hasil mineralisasi bakteri. Dalam air, ammonia berada dalam dua bentuk yaitu ammonia tidak terionisasi (NH3) dan ammonia terionisasi (NH4+). Jumlah total kedua bentuk ammonia ini disebut juga dengan total ammonia nitrogen atau TAN (Ebeling et al., 2006). Konsentrasi relatif dari kedua bentuk ammonia terutama tergantung pada pH, temperatur dan salinitas. Keberadaan ammonia tidak terionisasi di dalam media budidaya sangat dihindari karena bersifat toksik bagi organisme akuatik bahkan pada konsentrasi yang rendah. Stickney (2005) menyatakan bahwa konsentrasi ammonia dalam media budidaya harus lebih rendah dari 0,8 mg/L.
Dalam sistem akuakultur, secara alami terjadi siklus nitrogen dalam air (Gambar 1) dengan input nitrogen paling utama berasal dari pakan buaian (Crab et al., 2007). Dari sejumlah pakan yang dimasukkan kc kolam, sebagian tidak termakan oleh ikan, sementara pakan yang dikonsumsi sebagian dikonversi mcnjadi biomasa ikan dan sebagian lagi diekskresikan sebagai ammonia atau dikeluarkan sebagai feses. Pakan yang tidak termakan dan feses akan tcrdckomposisi oleh bakteri yang diikuti dengan pelepasan ammonia yang kemudian terakumulasi dalam air bersaraa dengan hasil ekskresi ikan. Melalui peranan bakteri nitrifikasi dan denitrifikasi yang terdapat dalam air dan sedimcn, TAN dalam air kemudian dapat ditransformasi menjadi nitrit, nitrat dan gas nitrogen (Ebeling et al., 2006; Hargreaves, 1998). Selain itu TAN dan nitrat dapat diasimilasi oleh fitoplankton atau tanaman yang terdapat dalam air yang kemudian dapat dimanfaatkan oleh organisme budidaya yang memang dapat memanfaatkannya. Secara garis besar ketiga proses alami konversi N tersebut dikelompokkan menjadi tiga yaitu konversi secara fotoautotrofik oleh alga dan tanaman air, secara kemoautotrofik melalui oksidasi oleh bakteri nitrifikasi dan immobilisasi secara heterotrofik oleh bakteri heterotrof (Ebeling et al., 2006).
Crab et at. (2007) menyatakan bahwa eliminasi kelebihan N terutama ammonia, nitrit dan nitrat dalam sistem budidaya dapat dikelompokkan menjadi dua, yaitu eliminasi N di luar wadah budidaya dan di dalam wadah budidaya. Eliminasi N di luar wadah budidaya dibedakan menjadi beberapa jenis seperti kolam perlakuan (atau reservoir) dan kombinasi bak sedimentasi dan bak nitrifikasi (biofilter). Sementara eliminasi N dalam wadah budidaya dilakukan dengan prinsip utama konversi N oleh bakteri heterotrof dan fitoplankton. Dua metoda eliminasi N dalam media budidaya yang sedang berkembang adalah sistem perifiton dan teknologi bioflok
Teknologi Bioflok
Teknologi bioflok merupakan salah satu alternatif baru dalam mengalasi masalah kualitas air dalam akuakultur yang diadaptasi dari teknik pcngolahan limbah domestik secara konvensional (Avnimelech, 2006; de Schryver et al., 2008). Prinsip utama yang diterapkan dalam teknologi ini adalah manajemen kualitas air yang didasarkan pada kemampuan bakteri heterotrof untuk memanfaatkan N organik dan anorganik yang terdapat di dalam air.
Pada kondisi C dan N yang seimbang dalam air, bakteri heterotrof yang merupakan akan memanfaatkan N, baik dalam bentuk organik maupun anorganik, yang terdapat dalam air untuk pembentukan biomasa sehingga konsentrasi N dalam air menjadi berkurang (de Schryver et al., 2008). Secara teoritis, pemanfaatan N oleh bakteri heterotrof dalam sistem akuakultur disajikan dalam reaksi kimia berikut (Ebeling et al., 2006):
NH4+ + 1.18C6H12O6 + HC03- + 2.06O2 C5H7O2N + 6.06H2O + 3.07CO2
Dari persamaan tersebut maka dapat diketahui bahwa secara teoritis untuk mengkonversi setiap gram N dalam bentuk ammonia, diperlukan 6,07 g karbon organik dalam bentuk karbohidrat, 0,86 karbon anorganik dalam bentuk alkalinitas dan 4,71 g oksigen terlarut. Dari persamaan ini juga diperoleh bahwa rasio C/N yang diperlukan oleh bakteri heterotrof adalah sekitar 6. Goldman (1987) menyatakan bahwa pada substrat dengan rasio C/N sama dengan atau lebih dari 10, bakteri heterotrof tidak akan meregenerasi ammonia dari hasil kalabolisme bahan organik (asam amino) dan sebaliknya akan memanfaatkannya untuk membentuk sel baru. Sebaliknya, pada rasio C/N yang rendah (<1 10="" 2006="" akan="" ammonia="" aplikasi="" argreaves="" atau="" avnimelech="" bahwa="" bakteri="" bioflok="" c="" diupayakan="" heterotrof="" ke="" lebih.="" lingkungannya="" maka="" melepaskan="" mencapai="" menyatakan="" rasio="" span="" teknologi="" untuk="">
Teknologi bioflok, sering disebut juga dengan teknik suspensi aktif (activated suspension technique, AST), menggunakan aerasi konstan untuk memungkinkan terjadinya proses dekomposisi secara aerobik dan menjaga flok bakteri berada dalam suspensi (Azim et al., 2007). Dalam sistem ini, bakteri heterotrof yang tumbuh dengan kepadatan yang tinggi berfungsi sebagai bioreaktor yang mengontrol kualitas air terutama konsentrasi N serta sebagai sumber protein bagi organisme yang dipelihara.
Pembentukan bioflok oleh bakteri terutama bakteri heterotrof secara umum bertujuan untuk meningkatkan pemanfaatan nutrien. menghindari stress lingkungan dan predasi (Bossier & Verstraete, 1996; de Schryver et al., 2008). Flok bakteri tersusun atas campuran berbagai jenis mikro-organisme (bakteri pembentuk flok, bakteri filamen, fungi), partikel-partikel tersuspensi, berbagai koloid dan polimer organik, berbagai kation dan sel-sel mati (Jorand et al., 1995, Verstraete, et al., 2007; de Schryver et al., 2008) dengan ukuran bervariasi dengan kisaran 100 - 1000 µm (Azim et al., 2007; de Schryver et al., 2008). Selain flok bakteri, berbagai jenis organisme lain juga ditemukan dalam bioflok scperti protozoa, rotifer dan oligochaeta (Azim et al., 2007; Ekasari, 2008).
Komposisi organisme dalam flok akan mempengaruhi struktur bioflok dan kandungan nutrisi bioflok (Izquierdo, et al., 2006; Ju et al., 2008). Ju et al. (2008) melaporkan bahwa bioflok yang didominasi oleh bakteri dan mikroalga hijau mengandung protein yang lebih tinggi (38 dan 42% protein) daripada bioflok yang didominasi oleh diatom (26%).
Kondisi lingkungan abiotik juga berpengaruh terhadap pembentukan bioflok seperti rasio C/N, pH, temperatur dan kecepatan pcngadukan (de Scryver et al., 2008; Van Wyk & Avnimeleeh, 2007).
Sementara menurut de Schryver et al. (2008), mekanisme pembentukan flok oleh komunitas bakteri merupakan proses yang kompleks yang merupakan kombinasi berbagai fenomena fisika, kimia dan biologis seperti interaksi permukaan bakteri secara fisik dan kimiawi, dan quorum sensing sebagai kontrol biologis.
Aplikasi teknologi bioflok dalam akuakultur
Hingga saat ini teknologi bioflok telah diaplikasikan pada budidaya ikan dan udang seperti nila, sturgeon, snook, udang putih dan udang windu (Arnold et al., 2009;
Avnimeleeh, 2005, 2007; Burford et al., 2003, 2004; Hari et al., 2004; Serfling, 2006).
Beberapa penelitian menunjukkan bahwa aplikasi teknologi bioflok berperan dalam perbaikan kualitas air, peningkatan biosekuriti, peningkatan produktivitas. peningkatan efisiensi pakan serta penurunan biaya produksi melalui penurunan biaya pakan (Avnimelech, 2007; Crab et al., 2008, 2009; Ekasari, 2008; Hari et al., 2006, Kuhn et al., 2009; Taw, 2005).
Kemampuan bioflok dalam mengontrol konsentrasi ammonia dalam sistem akuakultur secara teoritis maupun aplikasi telah terbukti sangat tinggi. Secara teoritis Ebeling et al. (2006) dan Mara (2004) menyatakan bahwa immobilisasi ammonia oleh bakteri heterotrof 40 kali lebih cepat daripada oleh bakteri nitrifikasi. Secara aplikasi de Schryver et al. (2009) menemukan bahwa bioflok yang ditumbuhkan dalam bioreaktor dapat mengkonversi N dengan konsentrasi 110 mg NH4/L hingga 98% dalam sehari. Penelitian ini menunjukkan bahwa bioflok memiliki kapasitas yang besar dalam mengkonversi nitrogen anorganik dalam air, sehingga dapat memperbaiki kualitas air dengan lebih cepat. Hasil-hasil penelitian mengenai aplikasi bioflok dalam kegiatan akuakultur secara langsung juga menunjukkan bahwa kualitas media pemcliharaan, pertumbuhan dan efisiensi pakan udang windu yang dipelihara dengan peningkatan rasio C/N secara signifikan lebih baik daripada kontrol (Hari et al. 2004,2006; Samocha et al., 2007). Peningkatan efisiensi pakan juga ditunjukkan oleh beberapa penelitian aplikasi bioflok (Azim & Little, 2008; Hari et al., 2004, 2006). Hal ini menunjukkan bahwa keberadaan bioflok sebagai suplemen pakan telah meningkatkan efisiensi pemanfaatan nutrien pakan secara keseluruhan, Beberapa penelitian menunjukkan bahwa bioflok dapat dimanfaatkan, baik secara langsung maupun sebagai tepung untuk bahan baku pakan (Azim & Little, 2008; Ekasari, 2008; Kuhn et al., 2008; 2009). Adapun kandungan nutrisi bioflok umumnya beragam pada setiap penelitian (Tabel 1) namun dapat mememuhi kebutuhan organisme akuatik pada umumnya, Craig & Helfrich (2002) menyatakan bahwa pakan ikan sebaiknya mengandung 18 - 50% protein, 10 - 25% lemak, 15 - 20% karbohidrat, <8 1="" 2009="" 20="" 240="" 25="" abu="" aerasi="" al.="" amp="" aplikasi="" atau="" avnimelech="" bahwa="" baik="" biaya="" bioflok="" budidaya="" dalam="" dan="" dapat="" dari="" data="" dengan="" di="" diberi="" digunakan="" dikembangkan="" dikombinasikan="" dikurangi="" dilakukannya="" diperlukan="" diperoleh="" ditambahkan="" diujicobakan="" energi="" et="" fcr="" hingga="" ikan="" indonesia="" ini="" isotop="" juga="" kepadatan="" kg="" kochba="" kontrol.="" kurang="" lebih="" melaporkan="" memanfaatkan="" menggunakan="" menunjukkan="" menurunkan="" mg="" mineral.="" n="" nila="" nitrogen="" oleh="" pada="" pakan.="" panen="" parsial.="" parsial="" pemanenan="" pemanfaatan="" pembuatan="" penelitian="" pertumbuhan="" produksi="" protein="" putih="" secara="" sejumlah="" setara="" sistem="" span="" substitusi="" tambak="" taw="" teknologi="" telah="" tepung="" tinggi="" udang="" uhn="" untuk="" vitamin="" yang="">
Pertumbuhan bioflok dalam sistem akuakultur dipcngaruhi oleh fakior kimia, fisika dan biologis dalam air. Beberapa faktor yang perlu diperhatikan untuk mendorong pembentukan bioflok dalam sistem budidaya diantaranya adalah pcrgantian air seminimal mungkin hingga mendekati nol, aerasi kuat serta peningkatan rasio C/N (Van Wyk & Avnimelech, 2007). Menurut Van Wyk & Avnimelech (2007) karakteristik sistem bioflok adalah kebutuhan oksigen yang tinggi dan laju produksi biomas bakteri yang tinggi. Oleh karena itu dalam sistem ini diperlukan aerasi dan pengadukan yang kuat untuk menjamin kebutuhan oksigen baik dari organisme budidaya maupun biomas bakteri serta untuk memastikan bahwa bioflok tetap tersuspensi dalam air dan tidak mengendap. intensitas pengadukan dan kandungan oksigen juga mempengaruhi struktur dan komposisi bioflok (de Schryver et al., 2008). Intensitas pengadukan yang terlalu tinggi dapat mempengaruhi ukuran bioflok sedangkan kandungan oksigen yang terlalu rendah dapat menyebabkan dominasi bakteri filamen pada bioflok yang akan menyebabkan bioflok cenderung terapung.
Pakan buatan yang digunakan dalam kegiatan akuakultur umumnya mengandung protein yang cukup tinggi dengan kisaran 18 - 50% (Craig & Helfrich, 2002) dengan rasio C/N kurang dari 10 (Azim et al., 2007). Hal ini tentunya berdampak pada keseimbangan rasio C/N dalam media budidaya, sehingga untuk penerapan teknologi bioflok, rasio C/N perlu ditingkatkan lagi. Peningkatan rasio C/N dalam air untuk menstimulasi pertumbuhan bakteri heterotrof dapat dilakukan dengan mengurangi kandungan protein dan meningkatkan kandungan karbohidrat dalam pakan (Azim et al., 2007; Tacon et al., 2004) atau dengan menambahkan sumber karbohidrat secara langsung ke dalam air (Avnimelech, 2007: Samocha et al., 2007). Sumber karbohidrat dapat berupa gula sederhana seperti gula pasir atau molase (Ekasari, 2008; Kuhn et al., 2008, 2009; Samocha et al., 2007), atau bahan-bahan pati seperti tepung tapioka, tepung jagung, tepung terigu dan sorgum (Avnimelech, 1999; Hari et al., 2004; Van Wyk & Avnimelech, 2007).
Penambahan kandungan karbohidrat dalam pakan tentunya akan merubah komposisi pakan secara keseluruhan sehingga diperlukan adanya penyesuaian bahan-bahan tertentu dalam pakan seperti peningkatan kadar vitamin dan mineral. Menurut Avnimelech (1999) jumlah karbohidrat yang ditambahkan untuk mendorong pembentukan bioflok dapat dihitung dengan menggunakan rumus berikut:
Karbohidrat (kg)= Pakan (kg) x % N dalam pakan x % ekskresi N/0,05
Penggunaan sumber karbon juga perlu memperhatikan beberapa faktor diantaranya kecepatan pemanfaatan karbohidrat oleh bakteri, kandungan protein dalam sumber karbohidrat itu sendiri, kecernaan karbohidrat oleh organisme budidaya, serta harga per unit karbohidrat. Sumber karbon juga dapat mempengaruhi kandungan nutrisi bioflok seperti yang ditunjukkan dalam Tabel 1 (Crab et al., 2009; de Schryver et al., 2008; Ekasari, 2008). Selain aerasi dan pengadukan, dan penambahan karbon, pembentukan dan struktur bioflok juga dipengaruhi oleh faktor kimia, fisika dan biologis lain scpcrti laju akumulasi bahan organik, temperatur dan pH (de Schryver et a/., 2008).
Selain melalui pengamatan visual dan mikroskopik (Gambar 2), pembentukan dan keberadaan bioflok dalam sistem akuakultur dapat diketahui melalui pengukuran beberapa parameter kimia dan fisika air. Parameter kimia yang sering digunakan sebagai indikator utama keberadaan bioflok meliputi chemical oxygen demand (COD), atau jumlah oksigen yang diperlukan untuk mengoksidasi seluruh bahan organik dalam sampel secara kimiawi, dan biological oxygen demand (BOD) atau jumlah oksigen yang diperlukan oleh mikroorganisme untuk mengkonversi bahan organik melalui proses biokimia. Pada akuakutur dengan sistem bioflok, kebutuhan akan oksigen akan meningkat terutama disebabkan oleh tingginya kepadatan bakteri heterotrof di dalam air dan tentunya berpengaruh pada nilai COD maupun BOD. Parameter fisika yang dapat digunakan untuk mendetcksi keberadaan bioflok adalah suspended solids (SS)f volatile suspended solids (VSS), floc volume index (FVI). Salah satu karakter utama sistem bioflok adalah tingginya padatan tersuspensi terutama VSS yang merupakan indikator tingginya bahan organik tersuspensi dalam air.
Teknologi bioflok di masa depan
Dengan berbagai kelebihan yang telah dijelaskan di atas maka jelaslah bahwa teknologi bioflok merupakan salah satu alteraatif teknologi untuk kegiatan akuakultur yang ramah lingkungan dan berkesinambungan. Namun demikian dalam aplikasi langsung pada akuakultur sistem intensif masih ditemukan beberapa permasalahan dan aspek kajian yang membutuhkan penelitian lebih lanjut seperti kebutuhan energi untuk aerasi dan pengadukan, kestabilan sistem, kandungan nutrisi bioflok serta pengaruh bioflok terhadap transmisi dan infeksi penyakit.
Kepadatan bakteri yang tinggi dalam air akan menyebabkan kebutuhan oksigen yang lebih tinggi sehingga aerasi untuk penyediaan oksigen dalam penerapan teknologi bioflok merupakan salah satu kunci keberhasilan. Selain berperan dalam penyediaan oksigen, aerasi juga berfungsi untuk mengaduk (mixing) air agar bioflok yang tersuspensi dalam kolom air tidak mengendap.
Pengendapan bioflok di dasar wadah harus dihindari selain untuk mencegah terjadinya kondisi anaerobik di dasar wadah akibat akumulasi bioflok, juga untuk memastikan bahwa bioflok tetap dapat dikonsumsi oleh organisme budidaya. Untuk tercapainya tujuan aerasi ini, maka metoda aerasi yang paling tepat untuk sistem bioflok perlu dikaji lebih dalam lagi baik dari segi teknis maupun ekonomis.
Seperti yang dijelaskan pada uraian di atas bahwa pembentukan bioflok merupakan mekanisme yang kompleks yang melibatkan berbagai aspek fisika, kimia dan biologis, sehingga pembahan pada salah satu parameter akan mempengaruhi parameter lain. Azim & Little (2008) menemukan bahwa kualitas air di wadah pemeliharaan dengan perlakuan teknologi bioflok pada pemeliharaan ikan nila cenderung tidak stabil. Tingginya aktivitas respirasi mikroba dalam sistem bioflok juga menyebabkan terjadinya fluktuasi pada pH dan alkalinitas (Azim et al., 2007). Meningkatnya kekeruhan akibat tingginya padatan tersuspensi juga dapat berpengaruh pada kemampuan melihat beberapa jenis ikan sehingga berpengaruh pada jumlah pakan yang dimakan. Laju akumulasi bahan organik, laju konsumsi bioflok oleh organisme budidaya serta laju peningkatan biomas bakteri merupakan faktor-faktor yang harus diketahui untuk mengontrol konsentrasi flok yang optimum dalam air. Jika laju akumulasi bahan organik tinggi maka laju peningkatan biomas bakteri akan tinggi pula. Jika hal ini tidak diikuti dengan laju konsumsi bioflok oleh organisme budidaya maka akan terjadi akumulasi bioflok yang berlebihan yang akhirnya justru akan membuat sistem budidaya menjadi tidak stabil.
Salah satu solusi alternatif dari dua permasalahan di atas adalah dengan memisahkan reaktor bioflok dengan wadah
pemeliharaan (Azim & Little, 2008). Dengan cara tersebut, bioflok dapat berfungsi sebagai biofilter scperti halnya dalam sistem resirkulasi. Bioflok yang dihasilkan dari reaktor ini kemudian dapat dimanfaatkan langsung sebagai pakan untuk organisme budidaya atau dibuat menjadi tepung untuk bahan baku pakan (Kuhn et at., 2008,2009). Tabel 1 menunjukkan bahwa kandungan nutrisi bioflok cenderung tidak stabil dan dipengaruhi oleh berbagai faktor seperti sumber karbon dan komposisi biologisnya. Informasi mengenai kandungan nutrisi bioflok juga masih terbatas pada kandungan nutrisi ulama seperti protein kasar, lemak kasar, kadar abu dan karbohidrat.
Dengan demikian penelitian lanjutan aspck nutrisi bioflok masih perlu dilakukan. Penelitian oleh de Schryver et al. (2009) menunjukkan bahwa bioflok mengandung poly-b-hydroxybutyrate (PHB) berkisar antara 0,9 hingga 16% yang cukup memadai untuk memenuhi kebutuhan ikan akan PHB yang tidak lebih dari 1%. PHB merupakan produk polimer intraselular yang dihasilkan oleh berbagai jenis mikroorganisme sebagai bentuk simpanan energi dan karbon (Defoirdt et al., 2007). Polimer ini diduga mempunyai efek pencegahan dan pengobatan terhadap infeksi Vibrio serta manfaat prebiotik dalam akuakultur (Defoirdt et at., 2007; de Schryver et al., 2008).
KESIMPULAN
Secara teoritis maupun aplikasi, penerapan teknologi bioflok dapat meningkatkan kualitas air melalui pengontrolan konsentrasi ammonia dalam air dan meningkatkan efisiensi pemanfaatan nutrien melalui pemanfaatan bioflok scbagai sumber pakan bagi organisme yang dibudidayakan.8>1>
0 comments:
Post a Comment